The equation of a given line is given by \(2x + 3y = 12 \)

1. The gradient of the line is =

2. The intercept on the x-axis is =

3. The intercept on the y-axis is =

4. Find the area of the triangle \(OAB \), where \(O \) is the origin and \(A \) and \(B \) are the points where the line cuts the x-axis and the y-axis respectively.

Given that the equations of two lines \(L_1 \) and \(L_2 \) are:
\(L_1 : 2x + y = 8 \) and
\(L_2 : 6y - mx = 3 \)

5. State the gradient of the line

6. If \(L_1 \parallel L_2 \) find \(m \)

7. If \(L_1 \perp L_2 \) find \(m \)
The equation of a given line is given by $2x + 3y = 12$

1. The gradient of the line is $\frac{-3}{2}$

2. The intercept on the x-axis is 6

3. The intercept on the y-axis is 4

4. Find the area of the triangle OAB, where O is the origin and A and B are the points where the line cuts the x-axis and the y-axis respectively. 12 sq. Units

Given that the equations of two lines L_1 and L_2 are:

$L_1 : 2x + y = 8$ and
$L_2 : 6y - mx = 3$

5. State the gradient of the line
-2

6. If $L_1 \parallel L_2$ find m
-12

7. If $L_1 \perp L_2$ find m
3